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SUMMARY

Spinal circuits can generate locomotor output in the
absence of sensory or descending input, but the
principles of locomotor circuit organization remain
unclear. We sought insight into these principles by
considering the elaboration of locomotor circuits
across evolution. The identity of limb-innervating
motor neurons was reverted to a state resembling
that of motor neurons that direct undulatory swim-
ming in primitive aquatic vertebrates, permitting
assessment of the role of motor neuron identity in
determining locomotor pattern. Two-photon imaging
was coupled with spike inference to measure loco-
motor firing in hundreds of motor neurons in isolated
mouse spinal cords. In wild-type preparations, we
observed sequential recruitment of motor neurons
innervating flexor muscles controlling progressively
more distal joints. Strikingly, after reversion of motor
neuron identity, virtually all firing patterns became
distinctly flexor like. Our findings show that motor
neuron identity directs locomotor circuit wiring and
indicate the evolutionary primacy of flexor pattern
generation.
INTRODUCTION

Themammalian nervous system is chargedwith the task of mov-

ing limbs—a challenge met through the construction of spinal

circuits that coordinate interwoven patterns of muscle activity.

Motor patterns reflect the activation of selected pools of motor

neuronswhich, in turn, are driven by descending commands, pe-

ripheral feedback, and input from spinal premotor interneurons.

Many studies have invoked the idea that local spinal circuits

alone can sustain motor neuron burst firing in patterns that

resemble the rhythmic alternation of antagonist muscles during

locomotion (Grillner and Zangger, 1975; Kiehn and Kjaerulff,

1996; Kudo and Yamada, 1987). Yet the basic rules of spinal cir-

cuit organization that govern the rhythmicity and alternation of

locomotor output remain unclear.
338 Cell 162, 338–350, July 16, 2015 ª2015 Elsevier Inc.
Attempts to delineate the spinal circuitry of mammalian loco-

motion have focused largely on connections among interneu-

rons with presumed roles in pattern generation. One long-held

view proposes that the premotor circuits that direct the

alternation of antagonist flexor and extensor muscles exhibit

an interdependence achieved through reciprocal interneuronal

connections (Brown, 1914; McCrea and Rybak, 2008; Talpalar

et al., 2011; Zhang et al., 2014). But the obligate role of reciprocal

connectivity has been called into question by observations that

rhythmic flexor or extensor motor output can, under rare circum-

stances, occur without activation of their antagonist pair (Burke

et al., 2001; Pearson and Duysens, 1976; Zhong et al., 2012).

Because spinal interneurons should be capable of distinguishing

the identity of flexor and extensor motor neurons, we reasoned

that insight into the organization of locomotor circuits might

emerge from a focus on the recognition and selection of motor

pools by premotor interneurons, rather than on the intricacies

of interneuron interconnectivity.

The genetic identities, muscle targets, and functional special-

ization of motor neurons have diversified greatly during verte-

brate evolution, suggesting the utility of addressing the influence

of motor neuron identity on locomotor pattern. Within this broad

evolutionary context, certain physiological findings are consis-

tent with the idea that mammalian flexor networks evolved by

co-opting a core axial motor circuit responsible for swimming

in ancestral aquatic vertebrates. In primitive vertebrates, body

undulations during swimming reflect the sequential recruitment

of motor neurons innervating segmentally arrayed axial muscles

(Grillner and Wallén, 2002). A similar wave-like sequence of

motor neuron activation is evident from ventral root recordings

at thoracic levels in the isolated rodent spinal cord during loco-

motor-like activity (Beliez et al., 2015; Falgairolle and Cazalets,

2007). This thoracic wave reflects the firing of median (MMC)

and hypaxial (HMC) motor column neurons that innervate trunk

and body wall muscles—the mammalian derivatives of primitive

axial muscles (Kusakabe and Kuratani, 2005). Intriguingly, the

firing of lumbar level flexor motor neurons represents a caudal

continuation of the thoracic activity wave, whereas extensor

motor neurons burst in antiphase (Falgairolle and Cazalets,

2007). This continuity of thoracic and flexor firing may reflect

the reappropriation of axial circuits for flexor pattern generation

and thus the evolutionary primacy of the flexor system. The idea

that the basic organization of modern flexor circuits predates the
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emergence of extensor circuits implies that the generation of

flexor-like patterns may not require interdependence between

flexor and extensor circuits.

To explore the concept of flexor primacy and examine how

motor neuron identity shapes the formation of locomotor cir-

cuits, we constructed cellular resolution maps of locomotor

pattern in the absence of descending commands and sensory

feedback. Two-photon imaging and spike inference were com-

bined to measure the firing of hundreds of target-defined motor

neurons in an isolated neonatal mouse spinal cord preparation

induced to locomotor-like activity (Bonnot et al., 2002; Kwan

et al., 2009). Our analysis revealed that motor pools innervating

muscles with synergistic functions fire synchronously and that

flexor pools are activated in a ventral-to-dorsal sequence that

matches the proximodistal order of their target muscles along

the limb.

This characterization of the wild-type pattern of motor neuron

activation served as a reference in analyzing how the ancestral

reversion of lumbar motor neuron identity modifies locomotor

pattern. The concept of flexor primacy suggests that reversion

of lateral motor column (LMC) neurons to an ancestral-like state

will lead to their recruitment of flexor-defining premotor inputs.

To address this possibility, we used genetic inactivation of the

FoxP1 transcription factor to convert limb-innervating motor

neurons to an HMC-like ground state (Dasen et al., 2008; Kusa-

kabe and Kuratani, 2005; Rousso et al., 2008). In FoxP1 mutant

preparations, we find that virtually all limb-innervating motor

neurons—those innervating extensor as well as flexor limb mus-

cles—are activated with the precise temporal features of flexor

motor neurons. These observations show that the subtype iden-

tity of motor neurons profoundly influences the pattern of motor

output. They also lend credence to the idea that a flexor-like

motor pattern emerged during vertebrate evolution without reli-

ance on an opponent extensor circuit.

RESULTS

Motor Neuron Firing Phase at Cellular Resolution
We monitored Ca2+-sensitive fluorescence in hindlimb-inner-

vating motor neurons in isolated postnatal day 2 to 5 mouse

spinal cord preparations induced to a state of locomotor-like ac-

tivity by glutamate and monoamine receptor agonists (5 mM

NMDA, 10 mM 5-HT, 50 mM DA) (Figures 1A–1D; Kudo and

Yamada, 1987). Motor neuron expression of the Ca2+ indicator

GCaMP3 was achieved by crossing mice carrying a conditional

ROSA-CAG-lsl-GCaMP3 allele (Zariwala et al., 2012) with

Olig2::Cre or ChAT::Cre motor neuron driver lines (Lowell et al.,

2006; Sürmeli et al., 2011). Prior to imaging, groups of synergist

muscles were injected with Alexa 555- or 647-conjugated

cholera toxin B subunit (CTB) to identify motor neurons by their

targets. Two-photon microscopy was used to acquire 90 s

GCaMP3 fluorescence image sequences from 22 to 64 sagittal

imaging fields (512 mm3 512 mm) that collectively spanned lum-

bar segments L2 to L6. Concurrent recordings of rhythmic activ-

ity from ventral roots L1 or L2 provided a reference signal for

measuring motor neuron burst firing phase, with the locomotor

cycle defined as the interval between peaks of L1/2 activity

(peaks = 0�). Recordings from L4 or L5 (Figure 1B) and contralat-
eral L1/L2 roots (data not shown) established that the alternating

burst firing characteristic of locomotor activity was evident in

each preparation.

We aimed to define firing features through the analysis of

Ca2+-sensitive fluorescence from motor neuron cell bodies, but

slow Ca2+ extrusion and noise in fluorescence measurements

obscure prominent burst features such as duration and the

phase of peak firing (Figure S1A; Helmchen and Tank, 2005).

To overcome this problem, we used an improved, model-based

statistical algorithm that infers the spike train most likely to un-

derlie a somatic fluorescence time series (Figures S1B and

S1C; Pnevmatikakis et al., 2014). This algorithm fits fluorescence

data using a model of spike-related fluorescence fluctuations

that assumes each action potential results in a fluorescence

transient with instantaneous rise and exponential decay, in the

added presence of Gaussian noise. For each somatic fluores-

cence time series, the algorithm yields a relative estimate of

the number of spikes that occurred during each imaging frame.

These normalized spike counts were assembled into histograms

that display the rhythmic burst firing of eachmotor neuron during

the image sequence (black bars in Figure 1E). To quantify burst

timing, the mean phase of each burst was calculated, and the

median of these values was defined as a neuron’s phase tuning

(Figures 1D and 1F).

The validity of such quantification depends on the ability of the

spike inference model to capture the relationship between firing

and fluorescence. The model was calibrated and its applicability

evaluated by exploiting the fact that motor neurons activated

antidromically by ventral root stimulation fire in patterns that

follow stimulus timing (Figures S2A–S2E; Bonnot et al., 2005).

For each experimental preparation, a single fluorescence tran-

sient decay time constant was computed using fluorescence

measurements obtained during patterned antidromic stimulation

that mimicked locomotor-like rhythmic burst firing. Use of these

preparation-specific time constant values corrected for decay

time variation between preparations (Figures S2F–S2H). In

addition, analysis of somatic fluorescence acquired during anti-

dromic activation indicated that models incorporating the

saturation of indicator binding do not provide a more accurate

prediction of spiking (Figures S1D and S1E), justifying use of a

model that does not take saturation into account.

To assess the accuracy of spike inference, we examined

phase tuning estimates for individual motor neurons during

antidromic stimulation (Figure S2D). Tuning measurements

derived from spike inference were nearly identical to values

computed directly from antidromic stimuli (mean difference ±

SD = �2.0 ± 10.7�, n = 367 neurons; Figures S2G and S2H).

Thus, spike inference permits accurate estimation of motor

neuron phase tuning.

In each spinal cord preparation, motor neurons are spread

across many imaging fields, and as such, neuron-by-neuron

comparisons of phase tuning require that values be stable over

time. To assess tuning stability, we imaged a subset of fields in

individual preparations at time points separated by 20 to

220 min. Importantly, even if tuning is stable, errors intrinsic to

the measurement of burst phase from inferred spiking will result

in variation in tuning estimates between time points. We esti-

mated this error from the tuning of motor neurons imaged during
Cell 162, 338–350, July 16, 2015 ª2015 Elsevier Inc. 339
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Figure 1. Measuring Locomotor Firing from Motor Neuron Ca2+-Sensitive Fluorescence

(A) Schematic of the neonatal whole-cord preparation used for imaging. LMC motor pools and their corresponding roots are shown in color.

(B) Ventral root recordings (DC to 1 kHz) obtained from L2 and L5 roots during agonist-induced locomotor firing.

(C) Single imaging field containing GCaMP3-expressing motor neurons (green).

(D) ROIs for motor neurons in (C) colored according to phase tuning. Scale bars in (D) and (G) are 100 mm. Phase color map is inset.

(E) Fluorescence time courses (red) for four motor neurons from (C andD) along with spike-induced fluorescencemodel fit (cyan) and inferred spiking (black bars).

(F) Inferred spike counts from a full 90 s image sequence are plotted across the locomotor cycle (L2 root signal peaks = 0�) for the four motor neurons in (E), with

the phase tuning of each neuron indicated (red arrows). Bin widths are 4�. Max height indicates the maximum per bin spike count.

(G and H) Phase tuning for motor neurons measured twice during an experiment (0 and 77 min later) to assess phase tuning stability.

(I) Distribution of tuning changes for all motor neurons (76 pairs) imaged in the preparation shown in (G) and (H). Mean change = �2�, SD = 21�.
(J) Mean tuning difference versus the interval between measurements for 15 mice (1,714 neurons). Dotted line indicates predicted mean difference assuming

stable phase tuning.

See also Figures S1 and S2.
antidromic activation, when all neurons fire in synchrony. The

distribution of these tuning values indicated that two separate

estimates of the same underlying tuning would differ on average

by 10.1�. In comparison, temporally separated estimates of mo-

tor neuron firing during agonist-induced locomotor-like activity

exhibited a similar difference of only 12.0� on average (n =

1,714 neuron pairs; Figures 1G–1J). Moreover, the slope of a

linear regression fit indicated an incremental deviation of tuning

values of only 2.8� per hr. Together, these findings establish that
340 Cell 162, 338–350, July 16, 2015 ª2015 Elsevier Inc.
the phase tuning of LMC motor neurons in individual prepara-

tions is relatively stable over the duration of data collection.

Thus, phase tuning estimates are both accurate and stable,

enabling assessment of the relative tuning of motor neurons

that innervate different limb muscles.

Synergy Group-Specific Locomotor Firing
Pools of motor neurons that innervate muscles with similar func-

tions at an individual joint form functional synergy groups and are



clustered within the spinal cord (McHanwell and Biscoe, 1981;

Vanderhorst and Holstege, 1997). To examine whether the

phase tuning of motor neurons segregates with synergy group

identity, we analyzed between 400 and 1,400 limb-innervating

motor neurons in each preparation that exhibited phasic firing

(mean = 818 motor neurons; Figures S3A–S3C; Berens, 2009).

Spatial tuning maps were constructed, with the position of

each motor neuron in three-dimensional space noted in a color

that indicates its tuning (Figures 2A–2J and Movies S1 and S2).

Thesemaps revealed numerousmotor neurons with tuning close

to the reference ventral root activity peak (L1/2 = 0�), and many

others with near-antiphase (�180�) tuning, at each lumbar

segmental level (Figures S4A–S4D). Motor neurons with similar

tuning were arranged in rostrocaudally elongated clusters that

formed clear boundaries with other neuronal clusters of distinct

tuning. These coherent clusters were similar in shape and extent

to motor pool synergy groups, suggesting a direct correspon-

dence between firing phase and synergy group identity. These

findings contrast with prior reports of a wave-like sequence of

motor neuron activation along the rostrocaudal axis of the

LMC that transgresses synergy group boundaries (O’Donovan

et al., 2008).

To probe further the correspondence between identity and

firing phase, we measured the phase tuning of motor neurons

that had been assigned to particular synergy groups (Figures

2K–2N). CTB was injected into four muscle groups: the intrinsic

foot (IF; toe flexors), anterior crural (AC; ankle flexors),

quadriceps (Q; knee extensor/hip flexor), and gluteal (G; hip

extensor/flexor) muscles, and the tuning of retrogradely labeled

motor neuronswasmeasured. Identified IF and ACmotor neuron

populations exhibited unimodal tuning distributions, whereas Q

and Gmotor neuron populations displayed bimodal distributions

(Figures S4E–S4H). Among Q motor neurons, the more lateral,

presumptive rectus femoris (RF) motor neurons were tuned

near 0�, whereas the more medial, presumptive vastus (V) motor

neurons were tuned close to 180� (De Marco Garcia and Jessell,

2008; Vanderhorst and Holstege, 1997; Figure S4G). Similarly,

for G motor neurons, a more rostral, presumptive tensor fasciae

latae (TFL) cluster was tuned near 0�, whereas a caudal cluster

containing the three remaining gluteal motor pools (GM) was

tuned around 180� (Figure S4H). These results are consistent

with functional definitions of RF and TFL as hip flexors and V

and GM muscles as knee and hip extensors, respectively (Plat-

zer, 2004). The alignment of six synergy groups with phasically

homogeneous clusters in tuning maps supports the view that

phase tuning is organized in register with synergy group identity.

If locomotor firing is synergy group specific, then cycle-by-

cycle covariation in the phase of burst firing might be stronger

within than between groups. To test this possibility, we evaluated

burst phase covariation using a synchrony index that reflects

across-cycle consistency in phase differences between pairs

of motor neurons (Figures 3A–3C; Mormann et al., 2000). We

observed higher synchrony among motor neurons assigned to

the same synergy group by CTB labeling (Figure 3D, mean

index ± SEM = 0.51 ± 0.007, n = 517 pairs; p < 10�10, Wilcoxon

test) and lower synchrony among motor neurons assigned to

different synergy groups (Figure 3D, mean index ± SEM =

0.33 ± 0.026, n = 68 pairs; p = 4.2 3 10�7, Wilcoxon test;
comparing with synergist pairs, p = 4.4 3 10�10, Wilcoxon test;

p = 4.7 3 10�6 after controlling for differences in proximity).

Thus, synergist motor neurons are preferentially synchronized.

We also assessed the degree of phase synchrony for synergist

motor neuron pairs as a function of their separation. Synchrony

indices did not vary significantly with proximity along the rostro-

caudal axis (Spearman correlation [r] = �0.07, p = 0.12; Fig-

ure 3E). In contrast,wedetected a shallowproximity dependence

along the dorsoventral axis (r=�0.09, p = 0.04; Figure 3F), which

may reflect slightly elevated synchrony within the motor pools

that comprise each synergy group. Nevertheless, as a whole,

these findings indicate that the major determinant of synchrony

in motor neuron burst phase is synergy group membership.

Positional Order and the Sequential Activation of Flexor
Synergy Groups
Walking is characterized by the sequential activation of limb

muscles, with a precision in recruitment that reflects their biome-

chanical function (Rossignol, 1996). To examine the degree to

which the order of muscle recruitment can be imposed by local

spinal circuits, we characterized the sequential activation of

flexor synergy groups innervating different limb joints. Normal-

ized spike histograms were used to derive an average firing

rate across the locomotor cycle for individual motor neurons

within defined synergy groups (Figures 4A–4F, bottom; Figures

2K–2N). Because Q and G motor neurons display bimodal tun-

ing, we used k-means clustering (k = 2) to separate the cycle-

averaged firing rates of both groups, yielding distinct RF and V

pools at different mediolateral positions within the Q population,

and rostrocaudally distinct TFL and GM pools within the G pop-

ulation (Figures S4G and S4H). Mean cycle-averaged firing rates

for individual synergy groups showed that the phase of peak

firing and burst duration were consistent across preparations

(Figures 4A–4F, colored traces in top panels).

Strikingly, we found a tight correspondence between the

dorsoventral position of synergy groups and the onset of their

activation, assessed here as the time at which firing rates

attained 50% of their eventual maxima (Figures 4G and 4H).

The mean firing of the ventral-most motor neurons innervating

the hip flexor TFL had an onset at a cycle phase of �43.8 ±

20.9� (median ± SE of median, n = 34 neurons). The firing of

more dorsally positioned motor neurons innervating RF, a hip

flexor with a more distal origin and insertion than TFL, had an

onset at �33.0 ± 4.4� (n = 38). The firing of still more dorsally

positioned motor neurons innervating ankle flexor AC muscles

had an onset at �13.2 ± 2.2� (n = 106). Finally, the dorsal-most

motor neurons, which innervate toe flexor IF muscles, had an

onset at 19.2 ± 2.6� (n = 72). The correlations of both burst onset

phase and peak firing phase with position were strong (onset:

r = 0.70, p < 10�10; peak: r = 0.69, p < 10�10; Figures 4G and

4H). Thus local spinal circuits appear able to impose a motor

neuron activation order that follows their settling positions and

thus the proximodistal order of their target muscles.

Flexor-like Locomotor Firing after Reversion of Motor
Neuron Identity
Are locomotor firing patterns modified by reverting motor

neuron columnar identity to an ancestral-like state? To test this
Cell 162, 338–350, July 16, 2015 ª2015 Elsevier Inc. 341
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Figure 2. Spatial Maps of Motor Neuron Phase Tuning across the LMC

(A and F) Maps showing phase tuning of motor neurons within the spinal cord as viewed from the lateral side. Data were obtained from two different preparations

(1,177 neurons in [A] and 1,264 neurons in [F]). Boundaries of the antidromically activated segment are indicated by vertical lines. Labels of other segments were

drawn assuming equal segment widths.

(B and G) Transverse projections for the rostrocaudal extent indicated in (A) and (F), respectively.

(C andH) Polar histogram showing the phase tuning of neuronsmapped in (A) and (F), respectively. Themaximal number of neurons within a single bin is shown to

the left of each histogram.

(D and I) Polar plot indicating the phase tuning of all motor neurons mapped in (A) and (F), respectively, in gray. CTB-labeled intrinsic foot (IF; D) and gluteal (G; I)

motor neurons are shown in black. The radial position of each point represents the circular spread of its phase tuning.

(E and J) Magnification of the boxed areas in (A) and (F), respectively, shows CTB-labeled neurons in detail.

(K) Schematic leg showing the position of all muscle groups characterized using CTB.

(L) Top: sagittal spinal cord section showing the position of IF neurons (red). Bottom: ROIs for motor neurons with significantly phasic activity colored according to

phase tuning using the same color scale as (A). Dotted line denotes a region containing CTB-labeled IF motor neurons.

(M and N) Same format as (L) but for two additional muscle groups: (M) anterior crural (AC), (N) gluteal (G). Scale bar in each image is 100 mm.

See also Figures S3 and S4 and Movies S1 and S2.
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Figure 3. Assessment of Synchrony in Lo-

comotor Firing within and across Synergy

Groups

(A) Normalized spike histograms of 44 simulta-

neously imaged motor neurons, illustrating syn-

chronized firing across locomotor cycles. The

normalized spike count computed for each imag-

ing frame is indicated by a grayscale tick mark

horizontally spanning the frame duration (67 ms).

Wide gray bars at bottom denote periods of

elevated L2 ventral root activity. For panels (A) to

(C), the normalized spike count for each imaging

frame is indicated in grayscale according to the

scale bar below (C).

(B) Spike histograms for eight simultaneously

imaged AC motor neurons.

(C) Spike histograms for six simultaneously imaged

GM motor neurons.

(D) Cumulative histograms of phase synchroniza-

tion indices computed for pairs of identified motor

neurons within the same (black) or between

different (red) synergy groups. Phase synchroni-

zation was computed with (dotted) and without

(solid) circular permutation of one spike histogram

relative to the other.

(E and F) Phase synchronization of normalized,

unpermuted spike histograms for identified neu-

rons within the same synergy group versus

proximity along the rostrocaudal (E) or dorsoven-

tral (F) axes. Pairs of motor neurons were divided

into seven equally sized groups according to

proximity, data are plotted along the x axis ac-

cording to the mean proximity of each group, and

error bars indicate mean ± SEM.
possibility, mice harboring a conditional FoxP1 allele were

crossed with an Olig2::Cre driver line to generate motor neuron

selective FoxP1MND mutants (Dasen et al., 2008). In FoxP1MND

mice,motor neurons fail to acquire LMC columnar and pool-spe-

cific identities and instead assume many of the features of

thoracic HMC neurons. Transfated motor neurons in FoxP1MND

mice fail to exhibit a stereotyped relationship between neuronal

position and muscle target (Figure S5), yet both flexor and

extensor muscles are still innervated. As a consequence, mus-

cles co-contract, limbs are rigid, and normal locomotion is pre-

cluded (Sürmeli et al., 2011).

To assess the impact of the reversion of motor neuron identity

on locomotor firing, we first monitored lumbar ventral root activ-

ities. Induction of locomotor-like activity in isolated FoxP1MND

preparations elicited rhythmic root activity at frequencies similar

to those in wild-type spinal cord (Figure S6; p = 0.66, Wilcoxon

test). However, the normal ipsilateral alternation between L2

and L5 roots was replaced by near synchrony (Figures S7A–

S7C), even though alternation between contralateral roots was

still evident (data not shown). Phase differences between T9/

T10 and L2 ventral root activity peaks were also similar in wild-

type and FoxP1MND preparations (Figures S7D–S7F; p = 0.85,

two-sample, two-tailed t test). Thus, the reversion of motor
neuron columnar fate abolishes rostrocaudal alternation inmotor

neuron burst firing. Nevertheless, rostral lumbar ventral root ac-

tivity still provides a comparable phase reference.

To probe the cellular origins of changes in lumbar locomotor

activity, we performed Ca2+-sensitive fluorescence imaging of

motor neurons and ventral root recording in FoxP1MND prepara-

tions. Motor neuron phase tuning maps (200–900 motor

neurons/map; mean = 656 motor neurons) revealed substantial

differences from tuning in wild-type preparations (Figures 5A–

5E and Movies S3 and S4; p = 0.0002, Kolmogorov-Smirnov

test). Motor neurons generally exhibited rhythmic firing at a

common phase, close to 0� (Figure 5C), with only �2% (29/

1413) of FoxP1MND motor neurons bursting closer to 180� (Fig-

ures 5F–5J). This anomalous minority likely reflects the redun-

dant function of FoxP4 and thus the preservation of LMC identity

in a small fraction of limb-innervating motor neurons (Dasen

et al., 2008).

To exclude the possibility that motor neurons targeting certain

muscles are not rhythmically active in FoxP1MND preparations,

we analyzed the activity of identified motor neurons. FoxP1MND

motor neurons retrogradely labeled by CTB injection into IF,

AC, G, and gastrocnemius (GS, ankle extensor) muscles ex-

hibited highly overlapping tuning distributions (IF: �3 ± 21�,
Cell 162, 338–350, July 16, 2015 ª2015 Elsevier Inc. 343
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Figure 4. Cycle-Averaged Firing of Identified Motor Neurons Re-

veals Sequential Recruitment of Flexor Synergy Groups

(A–F) Bottom: cycle-averaged firing rates from individual CTB-labeled motor

neurons (gray) imaged in a single preparation. Colored traces represent their

mean. Top:mean cycle-averaged firing rates fromCTB-labeledmotor neurons

from three different preparations for each of the six different synergy groups

analyzed.

(G) Mean firing rates ± SEM for identified motor neurons from individual syn-

ergy groups, pooled across preparations. Colors correspond to those used in

(A)–(F).

(H) Median burst peak and burst onset times ± SE of the median for four flexor

synergy groups ordered by dorsoventral position (inset).
mean ± SD, n = 46 neurons; AC: 20 ± 26�, n = 88; G: 13 ± 23�,
n = 8; GS: �19 ± 28�, n = 33) in marked contrast to wild-type

preparations. In particular, we noted a profound conversion of

extensor (G and GS) motor neuron firing to a flexor-like phase

(Figures 5D and 5E). In addition, IF motor neurons now fired

slightly earlier than AC neurons, the opposite of their wild-type
344 Cell 162, 338–350, July 16, 2015 ª2015 Elsevier Inc.
relationship. We conclude that the loss of FoxP1 erodes the

normal synergy group-specific patterns of motor neuron burst

firing and promotes flexor monotony.

We also examined the precision with which motor neurons

adopted flexor-like firing in FoxP1MND preparations. Cycle-aver-

aged firing rates of wild-type motor neurons could be separated

into two sets using k-means clustering (Figures 6A and 6B),

revealing well-separated sets within individual preparations

(clustering index mean ± SEM = 3.99 ± 0.26, n = 12 spinal cords)

and across different preparations (clustering index = 3.85,

n = 5,967 neurons). One set of firing rates was characterized

by brief bursts (86.7 ± 24.0� duration, mean ± SD, n = 4,212 neu-

rons) with phase tunings early in the locomotor cycle (13.7 ±

27.5�). The second set exhibited prolonged bursts (165.7 ±

46.5� duration, n = 1,755 neurons) tuned later in the locomotor

cycle (166.2 ± 46.1�). We found that 99.4% (175/176) of identified

motor neurons innervating AC and IF muscles were included

within the early firing set. This finding suggests that the early-

and late-firing sets are comprised of flexor and extensor motor

neurons, respectively (Figures 6C and 6D).

An equivalent analysis of FoxP1MND motor neurons revealed

that the cycle-averaged firing rates for virtually all neurons pre-

cisely matched those of wild-type flexor motor neurons, both

in phase tuning and burst duration (Figures 6E–6H). k-means

clustering failed to identify well-separated sets from individual

FoxP1MND preparations (clustering index mean ± SEM = 0.48 ±

0.14, n = 4) or among neurons aggregated across different

FoxP1MND preparations (cluster index = 0.27, n = 1,413 neurons).

Cluster separation was significantly less than for wild-type firing

rates (p = 2.1 3 10�6, one-tailed unpaired t test). Collectively,

FoxP1MNDmotor neurons exhibited distributions of phase tuning

(mean ± SD = 12.0 ± 42.2�) and burst duration (90.7 ± 29.3�) that
were very similar to those of the early-firing wild-type set that

comprises flexor motor neurons (Figure 6F). Consistent with

this, analysis of phase tuning and burst duration distributions re-

vealed that firing exhibited 21-fold greater similarity to that of

wild-type flexors than to that of extensors (Figures S7G and

S7H). Taken together, our results indicate that almost all

hindlimb-innervating motor neurons fire in a precisely flexor-

like pattern after genetic reversion of motor neuron columnar

identity.

DISCUSSION

Our analysis reveals that the identity of motor neurons deter-

mines temporal features of locomotor activation. Most critically,

the reversion of LMCneurons to an ancestral HMC-like columnar

character induces essentially all limb-innervating motor neurons

to fire in a flexor-like pattern, a strong indication of the primacy of

flexor pattern generation. We discuss below the relevance of this

relationship for the current organizational state of mammalian

locomotor circuits.

The Structure of Locomotor Firing at Cellular Resolution
The temporal features of motor neuron firing observed in

neonatal spinal cord in vitro exhibit distinctions from, and com-

monalities with, the pattern of activation of their muscle targets

in adults in vivo. The discrepancies imply an influence of
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Figure 5. Uniform Motor Neuron Phase Tuning in FoxP1MND Preparations

(A) Map showing phase tuning of motor neurons within a FoxP1MND spinal cord as viewed from the lateral side (927 neurons). Segmental boundaries of the

antidromically activated segment are indicated by vertical lines. Labels of other segments were drawn assuming equal segment widths.

(B) Transverse projection for the rostrocaudal extent indicated in (A).

(C) Polar histogram showing phase tuning of neurons mapped in (A). The maximal number of neurons within a single bin is shown to the left of the histogram.

(D) Polar plot indicating the phase tuning of all motor neurons mapped in (A) plotted in gray with the tunings of all CTB-labeled anterior crural (AC, black) and

gluteal (G, red) motor neurons from the same preparation superimposed. The radial position of each point represents circular spread around its phase tuning.

(E) Boxed area in (A) with CTB-labeled motor neurons indicated.

(F) Single imaging field from a FoxP1MND spinal cord containing GCaMP3-expressing motor neurons (green). Scale bar is 100 mm.

(G) ROIs for motor neurons in (F) colored according to phase tuning using the same color scale as (A).

(H) Fluorescence time courses (red) for threemotor neurons from (F andG) alongwith spike-induced fluorescencemodel fit (cyan) and inferred spikes (black bars).

(I) Inferred spike counts from a full 90 s image sequence plotted across the locomotor cycle for the threemotor neurons in (H), with the phase tuning of each neuron

indicated (red arrows). Bin widths are 4�. Max height indicates the maximum per bin spike count.

(J) Mean tuning difference versus the interval between measurements for 4 FoxP1MND mice (red) superimposed on values from 15 wild-type mice (gray). Dotted

line indicates predicted mean difference assuming stable phase tuning.

See also Figures S5 and S6 and Movies S3 and S4.
descending commands or sensory feedback in shaping locomo-

tor pattern and potentially the refinement of circuits as the spinal

cord matures.

Included among the discrepancies are differences in the num-

ber and duration of bursts. We observed that TFL and RF motor

neurons burst only once per locomotor cycle in vitro, yet their

target muscles exhibit dual burst activity in many locomotor con-

texts in vivo (Rossignol, 1996; Yakovenko et al., 2002). This dif-

ference likely reflects sensory feedback, inducing a second

phase of motor neuron bursting per cycle, or shifting the firing

phase of a subset of neurons within the TFL and RF pools

(Loeb, 1985; Perret and Cabelguen, 1980). A second distinction
is that flexor motor neurons exhibit relatively brief bursts in vitro,

whereas flexor muscle activation in vivo can occupy a much

greater proportion of the locomotor cycle. Studies in cats and

mice in vivo suggest that the duration of muscle activation is

also governed by sensory feedback, in part through the regula-

tion of muscle offset timing (Akay et al., 2014; Lam and Pearson,

2001). Together, these findings suggest that spinal circuits are

sufficient to produce a basic dynamical template of locomotor

activity that is subject to refinement through sensory feedback.

Nevertheless, conserved features emerge from a comparison

of locomotor patterns in vitro and in vivo, most clearly in the

timing of recruitment of mouse motor neurons that innervate
Cell 162, 338–350, July 16, 2015 ª2015 Elsevier Inc. 345
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Figure 6. Prevalence of Flexor-like Firing in FoxP1MND Motor Neurons

(A) Cycle-averaged firing rates for 854 motor neurons obtained from one wild-type preparation.

(B) Kernel density plots of the joint distribution of phase tuning and burst duration for 5,967 motor neurons pooled across 14 preparations and clustered into

two sets.

(C) Cycle-averaged firing rates for identified anterior crural (AC), intrinsic foot (IF), and gluteal extensor (GM) motor neurons, pooled across all wild-type

preparations.

(D) Kernel density plots of the joint distribution of phase tuning and burst duration for identified wild-type motor neurons.

(E) Cycle-averaged firing rates for 339 motor neurons from one FoxP1MND preparation.

(F) Kernel density plots of the joint distribution of phase tuning and burst duration for 1,413 imaged FoxP1MNDmotor neurons pooled across 4 mice and clustered

into two sets. Overlaid in cyan is the 1/6th of maximum contour from the early firing set derived from wild-type data shown in (B).

(G) Cycle-averaged firing rates for identified anterior crural (AC), intrinsic foot (IF), gluteal (G), or gastrocnemius (GS) motor neurons in FoxP1MND mice, pooled

across four FoxP1MND preparations.

(H) Kernel density plots of the joint distribution of phase tuning and burst duration for FoxP1MND motor neurons retrogradely labeled from AC, IF, G, and GS

muscles.

See also Figure S7.
synergist muscles acting on different joints. Our findings indicate

that local circuits are sufficient to direct the activation of motor

neurons innervating synergistic flexor muscles in a ventral-to-

dorsal sequence that matches the proximodistal order of their

muscle targets. EMG recordings from mouse hindlimb muscles

during walking document the onset of hip, knee, and ankle flexor

muscle activation in a similar proximodistal order (Akay et al.,

2014). In cat, however, muscle activation sequences do not

necessarily conform to the recruitment order we observe

in vitro in mouse (Krouchev et al., 2006; Rossignol, 1996; Yako-

venko et al., 2002). Such differences could reflect developmental

changes, interspecies differences in local circuit wiring, or the

added influence of descending commands and sensory feed-

back. The activation sequence we observed in vitro implies

that premotor interneurons are able to recognize and select

from synergy groups governing different limb joints.

We emphasize that two-photon Ca2+ imaging reveals aspects

of the organization of locomotor firing across the LMC that could
346 Cell 162, 338–350, July 16, 2015 ª2015 Elsevier Inc.
not have been discerned frommotor nerve ormuscle recordings,

which conflate the activity of individual motor neurons. The

high spatial resolution afforded by imaging revealed that motor

neurons exhibit abrupt changes in firing at the boundaries

between synergy groups. The spatial resolution and broad

coverage provided by our datasets were critical in exposing

spatially extended synchrony. Cellular resolution estimates of

neuronal firing were also necessary to delineate the precision

of flexor firing and its predominance among FoxP1MND motor

neurons.

Our observations also point to the inadequacy of monitoring

ventral root activity alone when probing the organization of

mammalian locomotor circuits. Interpretations of in vitro ventral

root recordings have typically relied upon the notion that L2 and

L5 root activity peaks reflect, respectively, flexor and extensor

motor neuron firing phases. Our findings document sizeable

populations of motor neurons that exhibit distinct flexor or

extensor firing patterns at each lumbar segment. Differences in
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Figure 7. Basic Patterns Extracted from In Vitro Neonatal Mouse

Locomotor Firing

(A–D) Components resulting from applying non-negative matrix factorization

(NMF) to the cycle-averaged firing rates obtained from 15 wild-type spinal

cords (with number of components set to four). Gray lines represent compo-

nents from individual spinal cords, and colored lines represent means across

all spinal cords.

(E) Cumulative variance explained by adding additional components. Red lines

indicate the number of components necessary to account for �90% of the

cumulative variance. Error bars represent mean values ± SD.

(F) Format matches (E), except each dataset was decomposed using principal

component analysis (PCA) instead of NMF.
the number of flexor and extensor motor neurons across seg-

ments and/or differences in motor neuron firing rate (Yakovenko

et al., 2002) could contribute to this discrepancy. Clearly, a reli-

ance on ventral root activity peaks ignores the extent of diversity

in motor neuron activities present at individual segmental levels

of the spinal cord.

At first glance, the heterogeneous firing patterns across

different flexor synergy groups appear inconsistent with a recent

analysis of ventral root recordings from isolated neonatal rat spi-

nal cord (Dominici et al., 2011). This study concluded that loco-

motor output from neonatal preparations is well approximated

by two alternating rhythmic patterns, in contrast to the greater

complexity seen in EMG recordings from behaving adults. This

discrepancy prompted us to perform an analysis similar to that

of Dominici et al. (2011) but using the cycle-averaged firing rates

of the many motor neurons we recorded in individual neonatal

spinal cords. Non-negative matrix factorization revealed that

four components are needed to explain �90% of the variance

in locomotor firing across the neonatal LMC, as in adult EMG

(Figures 7A–7E). Similar results were obtained using principal-

component analysis (Figure 7F). Thus, the complexity of locomo-

tor output from the isolated neonatal rodent spinal cord is similar

to that generated in adults in vivo, contrary to the conclusion of

Dominici et al. (2011).
Locomotor Pattern and the Recognition of Flexor and
Extensor Motor Neurons
What explains the finding that essentially all limb-innervating

motor neurons fire in a flexor-like pattern after FoxP1MND-medi-

ated reversion of motor neuron identity?

One possibility is that LMC neurons play an active role in the

differentiation or function of pattern-generating circuits. The

reversion of motor neuron identity may undermine the formation

of extensor circuits, leaving, by default, amonophasic flexor sys-

tem. Mechanistically, LMC neurons could be the source of a

secreted signal that instructs the assembly of extensor circuits.

In fact, there is precedent for the secretion by LMC motor neu-

rons of a signal, retinoic acid, which drives the diversification

of limb-innervating motor neurons (Sockanathan and Jessell,

1998). Alternatively, synaptic feedback from LMCmotor neurons

may be necessary for extensor pattern generation. Recruitment

of Renshaw inhibitory or equivalent excitatory interneurons by

motor neuron axon collaterals might influence ongoing inter-

neuron network activity (Alvarez and Fyffe, 2007; Machacek

and Hochman, 2006; O’Donovan et al., 2010).

A second scenario is suggested by the apparent ability of pre-

motor interneurons to discriminate flexor and extensor motor

neurons. The ancestral similarity of flexor LMC and HMC motor

neurons may lead to the expression of shared surface recogni-

tion features on these two motor neuron classes, permitting

flexor but not extensor premotor interneurons to form connec-

tions with ancestrally reverted motor neurons. In this view,

normal premotor activity would be preserved in FoxP1MND spinal

cord, but extensor premotor interneurons would fail to recognize

HMC-like motor neurons. The finding that a small minority of

motor neurons with extensor-like firing are still present in

FoxP1MND preparations indicates that extensor premotor cir-

cuits are at least in part preserved. In addition, the scattered dis-

tribution of the few extensor-firing motor neurons in FoxP1MND

preparations implies that premotor interneurons are able to

select individual target motor neurons with precision.

The Evolutionary Primacy of Flexor Pattern Generation
Whether extensor pattern generation is diminished or HMC-like

motor neurons recruit only flexor interneuronal input, the preva-

lence of flexor firing in FoxP1MND preparations provides strong

support for the evolutionary primacy of flexor pattern generation.

In mammals, the phasic continuity evident between limb flexor

and thoracic ventral root activity and the similarity between

wave-like patterns in mammalian thoracic and primitive verte-

bratemotor output are consistent with the idea that flexor pattern

generation emerged by co-opting primitive swim circuits. This

implies that paired flexor and extensor patterns did not emerge

jointly at the evolutionary onset of limb-based locomotion. In

the direct ancestors of tetrapods, the extensor system may

have evolved as a later elaboration of spinal circuitry to promote

ground repulsion through limb extension.

That the basic organization of modern flexor circuits predates

the evolutionary emergence of extensor circuits further implies

that the generation of flexor-like pattern can occur without oppo-

nent input from extensor premotor circuits. This view agrees with

the subordinate nature of extensor pattern generation suggested

by certain observations. Notably, locomotor firing in mice and
Cell 162, 338–350, July 16, 2015 ª2015 Elsevier Inc. 347



cats is subject to brief and sporadic periods of quiescence,

termed ‘‘deletions,’’ that persist for several cycles. Flexor burst

deletions are accompanied by tonic extensor motor neuron

firing, whereas flexor motor neuron bursting continues unabated

during extensor burst deletions (Duysens, 1977, 2006; Zhong

et al., 2012). Other studies have indicated that the rhythm of

locomotor firing may be determined by populations of interneu-

rons that burst exclusively in flexor phase and, in turn, drive

pattern-forming circuits (Brownstone andWilson, 2008; Pearson

and Duysens, 1976), which could at least partly explain how

flexor dominance is imposed. Taken together with our findings,

these results suggest that the late addition of extensor pattern,

coupled with the need for flexor-extensor coordination, led to

an asymmetric dependence in pattern-generating circuits, with

flexor circuits having a dominant role.

Genetic studies have shown that locomotor firing persists after

the loss of any single cardinal interneuron population (Crone

et al., 2008; Gosgnach et al., 2006; Lanuza et al., 2004; Zhang

et al., 2008), suggesting that the generation of locomotor firing

can be achieved through a diverse array of interneuron network

architectures. In addition, modeling studies have shown that

locomotor-like activity patterns can be read out from neural net-

works permitted considerable flexibility in their connectivity, as

long as the network outputs are weighted appropriately (Sussillo

and Abbott, 2009). In this context, and with a new emphasis on

motor neuron recognition, it is conceivable that interneuronal

connectivity in locomotor circuits is only weakly constrained,

whereas output connections onto motor pools are precisely

specified.

EXPERIMENTAL PROCEDURES

All experiments and procedures were performed according to NIH guidelines

and approved by the Institutional Animal Care and Use Committee of

Columbia University.

Retrograde Labeling of Motor Neurons

Motor neurons were retrogradely labeled in vivo at P1–P3 via intramuscular in-

jections of cholera toxin B subunit conjugated to Alexa 555 or 647 (CTB; Life

Technologies) (Sürmeli et al., 2011).

Spinal Cord Preparation

Spinal cords were removed from mice, aged 2–5 days postnatal, and sub-

merged in artificial cerebrospinal fluid (ACSF) held at constant temperature

(24–25�C). Suction electrode recordings were simultaneously obtained

from multiple ventral roots. Ca2+ transients were measured from GCaMP3-

expressing LMC motor neurons in a single segment while the corre-

sponding ventral root was antidromically stimulated to evoke motor

neuron activity, enabling the calibration of the model of spike-related fluores-

cence fluctuations we used for spike inference. Subsequently, locomotor

firing was induced by adding a cocktail of rhythmogenic agonists to

the ACSF (5 mM NMDA, 10 mM 5-HT, 50 mM DA). Starting 1 hr later, we

collected fluorescence image sequences throughout the imageable extent

of the LMC.

Two-Photon Microscopy

An Ultima microscope (Prairie Technologies) with a 203 objective (1.0 numer-

ical aperture, 2mmworking distance; XLUMPLFLN, Olympus) was used to ac-

quire all fluorescence images (256 x 256 pixels/frame). GCaMP3 was excited

using a Chameleon Ultra II laser (Coherent) tuned to 940 nm and, in 17 of 19

preparations, raster scanned across the preparation at 60 Hz using a resonant

galvanometer. These signals were downsampled to 15 Hz to increase the
348 Cell 162, 338–350, July 16, 2015 ª2015 Elsevier Inc.
signal-to-noise ratio. In 2 of 19 preparations, the laser was scanned at 8 Hz

with conventional 6 mm galvanometers in a spiral trajectory. GCaMP3 emis-

sion was collected using a GaAsP photomultiplier tube (Hamamatsu; 525/50

emission filter).

Data Analysis

The centroids of motor neuron somata were manually defined in ImageJ

and used to demarcate a preliminary region of interest (ROI) around each

soma. These ROIs were further refined using automated MATLAB scripts

to include only those pixels likely to arise from each soma. Time series of

ROI-averaged fluorescence fluctuations (DF/F) were processed using a spike

inference algorithm. Phase-tuning values were computed relative to peaks

in simultaneously obtained ventral root recordings using inferred spiking

activity.
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Supplemental Figures

Figure S1. Spike Inference Is a Justifiable Approach for Analyzing Ca2+ Imaging Data, Related to Figure 1
(A) Schematic depicting the relationship between firing and Ca2+. (i) Model firing rate with bursts peaking at 20 Hz (top) and underlying Poisson spike train

(bottom). The spike train is identical during both bursts. Extended vertical black lines indicate the time of peak firing rate during each burst. (ii) Convolving a fast-

decaying Ca2+ kernel (black; left) with the spike train shown in (i) results in a Ca2+ time series (cyan; right). Red bars denote the time of the Ca2+ peak. Blue lines

indicate burst duration as measured from the Ca2+ signal (defined as full width at half maximum amplitude). (iii) The convolution of the spike train from (i) with a

slower-decaying kernel (black; left) results in the time series shown (cyan; right). Variability in the Ca2+ indicator decay rate makes the comparison of burst

duration measurements taken from different preparations difficult. (iv) Gaussian noise was added to the Ca2+ time series from (ii) in order to simulate noisy

fluorescence measurements, in which both the Ca2+ peak and duration are obscured.

(B) Our spike inference algorithm used a simple model that assumed fluorescence measurements arose from a spike train convolved with a single-exponential

kernel (1; assumption validated in panels D-E of this figure), with additive Gaussian noise (2; assumption validated in Figures S2D and S2E). The algorithm inverted

this model (3; assumption validated in Figures S2F–S2H) to find the most likely spike histogram underlying each fluorescence time series.

(C) Example showing performance of spike inference on simulated data (red) plotted above the spike inference model fit (cyan) and inferred spikes (black bars).

(D) A fluorescence time series measured from a motor neuron (red), together with the predicted Ca2+ signal derived from either a linear model of Ca2+ dynamics

(cyan) or a nonlinear model (black).

(E) Histogram comparing the differences between linear and nonlinear model fit quality, as measured using the Pearson correlation (Corr) between measured

fluorescence and model prediction. This difference, Corr(linear prediction, data) - Corr(nonlinear prediction, data), is shown for 4,944 neurons that were each

imaged as they were antidromically driven to fire in defined patterns (as shown in Figures S2D and S2E). Red bars show a subset of high SNR neurons (n = 367)

that were used to estimate the fluorescence transient decay rate.
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Figure S2. Validation of Spike Inference Using Antidromic Motor Neuron Activation, Related to Figure 1

(A) Sagittal view of L2 during antidromic stimulation taken under epifluorescence illumination. The region responsive to antidromic stimulation is shown in red.

(B) Average response to the antidromic stimulus (orange; numbers show stimulation rate during each stimulus train in Hz) across the red region shown in (A). The

convolution of the antidromic stimulus and an exponentially decaying kernel is superimposed upon the average fluorescence time series (purple), and represents

the predicted Ca2+ response to the antidromic stimulus under our Ca2+ model.

(C) Two-photon imaging field (dotted region in (A)) containing example motor neurons that were responsive to antidromic stimulation (colored ROIs).

(D) Fluorescence time series (black) from three ROIs in (C) during antidromic stimulation (orange; numbers show stimulation rate during each stimulus in Hz). The

predicted Ca2+ response is shown in purple and the inferred spikes underlying each fluorescence time series are shown as black bars.

(E) Histograms of the residual error between the fluorescence time series and predicted Ca2+ response for each of the three responses shown in (D).

(F) Estimated decay time constants in seconds for each dataset plotted in (H). Colors correspond to different experimental conditions (legend in (H)).

(G) Comparison of peak detection and spike inference approaches to phase tuning estimation. Phase tuning was estimated using a simple peak detectionmethod

(left), or using spike inference (right). Phase tuning was estimated using fluorescence data taken from four antidromic bursts (shown in the left panel of (D)). The

midpoint of each burst was defined as 0�. Histograms showing phase tuning estimation error from n = 29 motor neurons from a singleOlig2::Cremouse (top) and

n = 24 motor neurons from a single ChAT::Cre mouse (bottom).

(H) Error distributions for each mouse preparation calibrated during antidromic stimulation using peak detection (left) or spike inference (right) to estimate phase.

Error bars span the mean ± SEM. This analysis reveals that spike inference successfully reduces phase error that arises due to the temporal delay between peak

calcium and peak firing rate, and due to variation in calcium decay rates between preparations.
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Figure S3. Correlation between Signal Quality and Phase Tuning Strength, Related to Figure 2

(A) Correlation between estimated signal-to-noise ratio (SNR) and the R statistic from Rayleigh’s test of circular uniformity for all imagedmotor neurons in a single

Olig2::Cre mouse. Red points denote imaged motor neurons that were excluded from further analysis because they had Rayleigh’s test P values > 0.5.

(B) Same format as (A) in a FoxP1MND preparation.

(C) The correlation between R and SNR was high in all wild-type preparations (Pearson correlation = 0.54-0.80, mean = 0.66, n = 15 wild-type spinal cords)

indicating that much of the pattern of motor neuron firing is captured by its phase tuning. This correlation seen in wild-type data was statistically indistinguishable

from the correlation measured in FoxP1MND data (Pearson correlation = 0.48-0.80, mean = 0.65, n = 4 spinal cords; comparison to wild-type: p = 0.94, two-

sample, two-tailed t test).
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Figure S4. Spatial Analysis of Motor Neuron Phase Tuning, Related to Figure 2

(A–D) Maps of motor neuron activity matching the format and data from Figures 2A–2J, but with phase tuning represented using only two colors: blue = tuning

closer to 0� and red = tuning closer to 180�.
(E–H) Transverse projections (left) from rostrocaudal segments of individual spinal cords with the phase tuning of CTB-labeled intrinsic foot (IF; E), anterior crural

(AC; F), quadriceps (V/RF; G), and gluteal (GM/TFL; H) motor neurons indicated in color. For each cord, polar plots (right) show the phase tuning of all motor

neurons (gray), and all IF (E), AC (F), Q (G), and G (H) motor neurons identified by CTB-labeling (black). The radial position of each point represents the circular

spread around the phase tuning. Middle subplots in L and M are similar to the adjacent transverse projections, except CTB-labeled neurons are color coded red

and blue according to their assignment via k-means clustering into one of two groups: vastus (V) and rectus femoris (RF) in (G), gluteus (GM) and tensor fasciae

latae (TFL) in (H).
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Figure S5. Spatial Organization of CTB-Labeled FoxP1MND Motor Neurons, Related to Figure 5

(A) Maximum intensity projection across a sagittally oriented lumbar spinal cord image stack from awild-typemouse. Identified anterior crural (AC)motor neurons

(red) are confined to a dorsal band above identified gluteal (G) motor neurons (blue).

(B) Transverse projection across the stack used in (A).

(C and D) Maximum intensity projections across two sagittal image stacks from two different FoxP1MNDmice showing labeled AC, G, and intrinsic foot (IF) motor

neurons. Arrows in (D) denote ventrally positioned AC motor neurons.
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Figure S6. Consistency of Burst Frequency across Preparations, Related to Figure 5

Average burst frequency during agonist-induced locomotor firing is shown for each preparation. Dots are median frequency values derived from single image

sequences. Bars denote medians ± median absolute deviations across all image sequences from a single preparation. For wild-type preparations, mean burst

frequency across all preparations = 0.25 Hz, SD = 0.062 Hz, n = 15 spinal cords. In FoxP1MND preparations, mean = 0.37 Hz, SD = 0.24 Hz, n = 4 spinal cords.

Burst frequency distributions from wild-type and FoxP1MND preparations were statistically indistinguishable (p = 0.66, Wilcoxon rank sum test).
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Figure S7. Comparisons between Wild-Type and FoxP1MND Ventral Root and Motor Neuron Activity, Related to Figure 6

(A, B, D, and E) Filtered ventral root recordings from wild-type (A,D) and FoxP1MND mutant mice (B,E).

(C) Phase differences between ventral root peaks measured between L5 and ipsilateral L2. Error bars represent the means ± SEM. computed for 45 90 s re-

cordings from a wild-type mouse (left) and 24 recordings from a FoxP1MND mouse (right).

(F) Phase differences between ventral root peaks measured between thoracic segments and ipsilateral L2. Error bars represent the means ± SEM. computed for

16 90 s recordings from a wild-type mouse (left) and 28 recordings from a FoxP1MND mouse (right).

(G) Overlap between the joint phase tuning and burst duration distributions for motor neurons from each FoxP1MND cord (n = 4) and either the early or late firing

sets of motor neurons aggregated from all wild-type cords. This was computed in order to measure the similarity in firing between FoxP1MND motor neurons and

wild-type motor neurons assigned to either set. Overlap with the early firing wild-type set (62 ± 3%) was significantly larger than with the late firing wild-type set

(3 ± 0.4%; p = 9.1 3 10�5, one-tailed paired t test).

(H) Overlap between the joint phase tuning and burst duration distributions for CTB-labeled FoxP1MND motor neurons aggregated from all 4 cords and either

the early or late firing sets of motor neurons aggregated from all wild-type cords. Distributions for CTB-labeled FoxP1MND motor neurons overlapped much

more heavily with the distribution for the early firing wild-type set (AC and IF overlap = 71%, GM and GS = 43%) than with that of the late firing wild-type set (AC

and IF = 3%, GM and GS = 5%; p = 10�5 Monte Carlo test).
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Supplemental Experimental Procedures 

 

Retrograde labeling of motor neurons 

Motor neurons were retrogradely labeled in vivo at P1-P3 via intramuscular injections of cholera 

toxin B subunit conjugated to Alexa555 or Alexa647 (CTB; Life Technologies). CTB-Alexa555 and 

CTB-Alexa647 were used (0.1% w/v in PBS) to label up to two different muscle groups in the 

same mouse. Imaging experiments were conducted 24-48 h after tracer injection. Injected 

hindlimbs were dissected under fluorescence guidance after each experiment to verify that the 

diffusion of injected CTB conjugate was restricted to the targeted muscle group. 

 

Spinal cord isolation 

Mice were rapidly decapitated and the vertebral column was removed and pinned ventral side up 

in a Sylgard-lined (Dow Corning) dissection dish perfused with ACSF (125 mM NaCl, 25 mM 

NaHCO3, 1.25 mM NaH2PO4, 2.5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, and 25 mM D-glucose, 

315 mOsm, equilibrated with 95% O2 and 5% CO2) held at 4º C with a feedback control system 

(ECO RE 415 S, Lauda) that cooled a brass holder encircling the dissection dish (G. Johnson, 

Columbia University). A ventral laminectomy was performed and dorsal and ventral roots were 

disconnected from their respective dorsal root ganglia and surrounding connective tissue. The 

isolated spinal cord was then transferred to a custom recording chamber mounted under a two-

photon microscope and allowed to equilibrate for at least 30 minutes. The temperature of the 

ACSF in the recording chamber was held constant at 24-25º C using an inline heater (Warner). 

ACSF was recirculated throughout the experiment using a peristaltic pump (Gilson) with a flow 

rate of 9-10 mL/min. 

 

Ventral root recording and stimulation 

After equilibration, spinal cords were pinned with the left lateral side positioned upwards. 

Suction electrodes were mounted on custom miniature manipulators that attached to the edges of 

the recording chamber. These electrodes were positioned around ventral roots L1 or L2 and L4 

or L5 on both the left and right sides of the cord. Additional suction electrodes used for 

stimulation were placed on dorsal roots L4 or L5. By stimulating dorsal roots at different 

intensities (8-20 µA), we were able to evoke monosynaptic responses (assessed based on 



latency) between homonymous pairs of dorsal and ventral roots as well as longer latency 

polysynaptic responses between heteronymous pairs of roots (Mentis et al., 2011). These 

measurements were used to verify that electrodes were positioned correctly on the relevant roots 

and that we could resolve signals from each one. Electrodes were also positioned on ventral roots 

L3 or L4 for antidromic motor neuron stimulation. Collectively, these electrodes served to 

stabilize the preparation mechanically, minimizing flow-induced motion artifacts during 

imaging. Ventral root activity was recorded (DC-4 kHz) using a multichannel amplifier and 

signal conditioner (CyberAmp 380, Molecular Devices), digitized at 10 kHz (Digidata 1440A, 

Molecular Devices), and recorded in Clampex (v. 10.3, Molecular Devices). 

 

Two-photon microscopy 

We used a Prairie Technologies Ultima microscope constructed using an Olympus BX-51 

chassis. A 20x objective (1.0 numerical aperture, 2 mm working distance; XLUMPLFLN, 

Olympus) was used to acquire all fluorescence images (256x256 pixels/frame). Excitation light 

was controlled with an electro-optical modulator (Model 302 RM, Con-Optics). We used a 

Chameleon Ultra II laser (Coherent) tuned to 940 nm to excite GCaMP3 and CTB-Alexa555, 

separated emitted fluorescence with a 560 nm dichroic (Chroma), and collected through separate 

emission filters (525/50 for GCaMP3 and 595/50 for CTB-Alexa555). CTB-Alexa647 was excited 

at 780 nm, and its fluorescence was separated with a 640 nm dichroic (Chroma) and collected 

through a 660/40 emission filter (Chroma). In 17 of 19 preparations, excitation light was raster 

scanned across the preparation at 60 Hz using a resonant galvanometer. These signals were 

downsampled to 15 Hz to increase the signal-to-noise ratio. In 2 of 19 preparations, the laser was 

scanned at 8 Hz with conventional 6 mm galvanometers in a spiral trajectory. We detected 

fluorescence using two non-descanned multi-Alkali photomultiplier tubes (Hamamatsu R3896, 

used for CTB-Alexa555 and CTB-Alexa647 imaging) and one GaAsP detector (Hamamatsu 

7422PA-40, used for GCaMP3 imaging). We delivered 100-200 mW (at 940 nm excitation) and 

100-300 mW (at 780 nm) to the back aperture of the objective during image acquisition.  

 

 At the beginning of each experiment, ventral root L3 or L4 was stimulated via a suction 

electrode to activate motor neurons antidromically (Bonnot et al., 2005; Lev-Tov and 

O'Donovan, 1995). Using square pulses (0.2 ms duration), we drove motor neurons to fire in a 



rhythmic pattern that resembled activity observed during agonist-induced locomotor firing 

(Cazalets et al., 1996; Hochman and Schmidt, 1998). The antidromic stimulus consisted of ten 

1.5 s long bursts, where each burst consisted of 9-25 pulses. These burst stimuli were delivered 

at a frequency of 0.22 Hz, approximating the 0.25 Hz average burst frequency we observed 

during agonist-induced locomotor firing (Figure S6). An identical stimulus waveform was used 

in every experiment. Stimulus intensity was 60 µA, approximately 5 times greater than the 

minimum intensity needed to evoke an antidromic response (cf. Bonnot et al., 2005). This 

supramaximal stimulus intensity was chosen to yield a maximal number of responsive neurons, 

such that larger stimulation intensities would not recruit more neurons or change the observed 

pattern of antidromic activation. The region containing responsive motor neurons was first 

identified through the BX-51 epifluorescence path using a 4x Olympus objective (UPlanFL, 0.13 

numerical aperture) and an EM-CCD (Hamamatsu C9100-13; 30 ms exposure per frame). We 

then acquired two-photon image sequences from 4-8 imaging fields within this region during 

stimulation.  

 

The membrane voltage of motor neurons during antidromic stimulation in a nearly 

identical experimental preparation, together with earlier intracellular recordings from motor 

neurons, suggest that motor neurons reliably spike following each antidromic stimulation pulse 

when stimulated at suprathreshold intensities (G.Z. Mentis, personal communication; Bonnot et 

al., 2005; Brock et al., 1952). In rare instances, individual antidromic pulses sometimes induce 

multiple spikes, but there is no indication that the overall shape of induced bursts during 

antidromic stimulation would be, on average, biased such that our validation procedure would 

errantly validate our phase tuning estimation methods. Furthermore, our observation of phase 

stability over time across hundreds of motor neurons suggests that even if some bias were to 

exist in our phase tuning measurements, it is at least consistent over time. 

 

 After optically recording antidromic responses, we applied a rhythmogenic agonist 

cocktail (5 µM NMDA, 10 µM 5-HT, 50 µM DA) to induce locomotor firing. One hour after 

application, we began acquiring image sequences in fields collectively spanning the three-

dimensional extent of the lateral motor column within the mediolateral depth imageable in our 

preparation. To choose these imaging fields, we first manually chose 6-8 overlapping fields that 



collectively spanned 2370-3330 µm along the rostrocaudal axis of the lumbar spinal cord, or 

approximately the whole rostrocaudal extent of the LMC. Starting from the position of each of 

these fields, we then chose 6-8 imaging fields equally spaced across 120-140 µm along the 

mediolateral axis, starting at the most lateral extent of the motor column and descending 

medially. Imaging fields were then visited consecutively in a pseudo-random order, and image 

sequences were acquired from each field for 90 s. A subset of fields were imaged a second time 

(6-28 locations; mean = 15) to assess stability in phase tuning over time. 

 

Image segmentation and preprocessing 

Fluorescence image sequences were preprocessed in ImageJ using custom scripts. The centroid 

of each motor neuron soma was manually identified, and a 15 x 15 pixel (30 x 30 µm) square 

region of interest (ROI) centered upon each of these centroids was defined. Fluorescence from 

these ROIs over time (data arrays of size 15 x 15 x T time steps) were then imported into 

MATLAB and processed further with custom scripts. Motor neuron somata contained in ROIs 

were manually matched to CTB-labeled somata apparent in static images acquired under 780 nm 

and 940 nm excitation from the same imaging fields. All subsequent analysis described here was 

performed in MATLAB. 

 

 Within each square ROI, we then found a set of pixels, called the spatial filter, which 

corresponded to a single motor neuron soma. First, we took each data array and decomposed it 

using a low-rank approximate PCA method for which we specified the decomposition rank to be 

5 (Rokhlin et al., 2009). We then defined the z-scores of the first decomposition component to be 

our initial spatial filter and thresholded the filter such that all positive pixel weights were set to 

be 1, and all negative weights were set to 0. Finally, we smoothed the filter (MATLAB function 

bwmorph using the ‘majority’ option) and decomposed it into connected components, retaining 

only the largest component (all other components were set to 0). If the largest component 

contained fewer than 5% of the total pixels in the 15x15 pixel square, which is much smaller 

than the average motor neuron soma area, we discarded that data array from further analysis. 

 

The spatial filters chosen from all data arrays taken from the same image sequence were 

subsequently compared to determine if any pixels had been assigned to the spatial filters of 



multiple neurons. Pixels that were assigned to multiple spatial filters were re-assigned to belong 

to only the spatial filter arising from the nearest filter centroid. Each pixel time series in the data 

array was then multiplied by its corresponding spatial filter weight and summed to yield a one-

dimensional fluorescence time series for each soma. Fluorescence time series were scaled to be 

between zero and one (for use with our spike inference algorithm) or in terms of ∆F/F for 

plotting. ∆F/F was defined as (F – F0)/ F0, where F0 was the 10th percentile value of F). 

Fluorescence time series were temporally aligned with ventral root recordings using frame 

acquisition times extracted from the voltage drive signal to the electro-optical modulator, which 

were recorded in Clampex. 

 

Spike inference 

We used new model-based fluorescence deconvolution methods (Pnevmatikakis et al., 2014) to 

estimate the spike train underlying each fluorescence time series. Intracellular Ca2+ concentration 

c was approximated by a first-order autoregressive model: 

ܿሺݐሻ ൌ ݐሺܿߛ	 െ 1ሻ   ሻݐሺݏ

where s is the number of spikes that the neuron fired during the t-th time bin, t = 1, …, T, and γ is 

related to the time constant, ߬, of the Ca2+ indicator by ߛ ൌ 1 െ ∆/߬, where the frame rate of 

acquisition in Hz is defined as 1/∆. Each fluorescence time series f was then modeled as: 

݂ሺݐሻ ൌ ሻݐሺܿߙ	  	ܾ 	ߝ௧, ,Νሺ0	~	௧ߝ  ଶሻߪ

where α is a nonnegative scalar and ε represents stationary Gaussian noise. This first-order 

model assumes an instantaneous transient rise time because the rise time of GCaMP3 in Ai38 

reporter mice is roughly the same as our 67 ms/frame image acquisition rate (Zariwala et al., 

2012). The baseline signal amplitude, b, was estimated by taking the 10th percentile value of each 

fluorescence time series and was not optimized further by the spike inference algorithm. This 

approach worked well with our data, because each motor neuron was active for a large fraction 

of its fluorescence time series. 

To estimate τ, we used image sequences collected during antidromic stimulation. We 

assumed that the binned spike train, s, underlying each fluorescence time series, f, could be 

approximated by the antidromic stimulus. Using this assumption, both the s and f are known. We 

then estimated a single τ for each antidromic image sequence using the fluorescence time series 

from all responsive motor neurons within it (neuron selection criteria described in Quantification 



of phase estimation error below). This calculation used the Multivariate Output-Error State-sPace 

(MOESP) systems identification method (Verhaegen and Verdult, 2007) implemented in the 

n4sid function in the MATLAB System Identification Toolbox. The median τ across all 

antidromic image sequences collected from a given cord was used as τ for spike inference from 

motor neurons from that cord. ߬ varied as a function of Cre driver strain used and ranged from 

0.67 – 1.10 seconds (Figure S2F). 

 

Next, we estimated the noise power σ2 by assuming that the autocovariance function of 

each fluorescence signal f at lag t, ܥሺݐሻ, satisfies the following equation: 

ሺ1ሻܥ ൌ ሺ0ሻܥߛ	 െ	ߪଶߛ 

 

While this equality is only strictly true when neuronal spiking follows Poisson statistics, we were 

able to use our antidromic data to verify that this approach is approximately correct for our data 

 ଶ was computed directly from each residual error distribution shown in Figure S2E, and theseߪ)

values match those estimated using the above equation). 

 

Given these parameter estimates for γ and σ2, we then employed a constrained 

nonnegative deconvolution algorithm (Pnevmatikakis et al., 2014) that inferred the most likely c 

and s underlying each fluorescence time series: 

min
,௦

imize 			்
் 	,ݏ

subject	to:			s  0, sሺtሻ ൌ 	ܿሺݐሻ െ ݐሺܿߛ െ 1ሻ, ‖݂ െ ܿ െ ܾࢀ‖   ܶ√ߪ	

 

In order to find the most likely sparse spiking pattern that is sufficient to explain each 

fluorescence trace without overfitting, the convex program above was solved using the CVX 

computational package (Grant et al., 2008) or a nonnegative least angle regression algorithm 

(Pnevmatikakis et al., 2014). The runtime of both algorithms increased linearly with the number 

of time steps in the fluorescence data. The magnitude of s at each time step represents a relative 

estimate of number of spikes that occurred during each imaging frame. Each s value was then 

normalized by the maximum s for each neuron. 

 



We also used our spike inference algorithm to estimate the signal-to-noise ratio (SNR) 

for each neuron in our dataset (as shown in Figure S3A-C). This quantity was defined as: 

݈	10 ଵ݃ሺ
‖ܿ‖ଶ	
ଶܶߪ	

ሻ 

 

Our spike inference algorithm yielded spike histograms consisting of a sequence of 

numbers between zero and one, each proportional to an estimate of neuronal firing rate at a given 

imaging frame. A more accurate, but less efficient, spike inference method returns continuously 

valued spike times, permitting the temporal pattern of multiple spikes within individual imaging 

frames to be detected and also providing uncertainty estimates (i.e. error bars) for all model 

parameters and spike inference output (Pnevmatikakis et al., 2013). In order to test whether the 

simpler algorithm that we used in the analysis presented in this paper errantly biased our 

conclusions, fluorescence data from two preparations were additionally analyzed with a different 

spike inference algorithm that used this more complex algorithm. We found that both methods 

yielded quantitatively similar results. 

 

Validating the use of a linear model of Ca2+ dynamics 

To test whether the linear model used to relate c to s defined in the previous section was 

adequate for spike inference (Figure S1D-E), we tested whether fluorescence may be better 

described as a nonlinear function of c: 

݊ሺݐሻ ൌ 	
1

1  expሺെβ െ	βଵܿሺݐሻሻ
 

so that observed fluorescence is now given by: 

݂ሺݐሻ ൌ ሻݐሺ݊ߙ	  ܾ 	ε௧ 

where ߙ, ܾ and ε are defined as in the linear model (described in the previous section). Such a 

model can account for nonlinearity, such as that produced by the saturation of Ca2+ indicator 

binding. 

 

We compared the ability of these two models to predict the structure of actual 

fluorescence data acquired during antidromic stimulation. Model parameters underlying the 

sigmoidal nonlinearity (β0, β1) and for scaling the data (α, b) could be directly computed in this 

setting because the relationship between actual spiking and fluorescence was known. For a given 



set of antidromic spike times [a1, a2,…, aK], we created the binned spike train s by assigning each 

spike time to a correct bin and scaling it depending on how close it was to the end of the bin: 

ሻݐሺݏ ൌ  exp ൬െ
∆ݐ െ ܽ

߬
൰

:∈ሾሺ௧ିଵሻ∆,௧∆ሿ	ୀଵ,…	

 

where ߬ ൌ 	െ∆/ሺߛ െ 1ሻ and ߛ was derived using the system identification approach described in 

the previous section. 

 

We then computed c (termed the linear prediction in this context) given the binned 

antidromic stimulus, s, and the linear relationship between c and s described earlier. To generate 

the nonlinear prediction, we first computed the parameters (β0, β1, α, b) underlying the maximum 

likelihood nonlinearity by solving: 

min
ஒబ,ஒభ,ఈ,ୠ

ሺ݂ሺݐሻ െ ݊ሺݐሻሻଶ
்

௧ୀଵ

 

 

With these parameters, we were able to use the binned antidromic stimulus, s, and the 

relationship between n and s to produce our nonlinear prediction of fluorescence data during the 

spike train s. 

 

To assess the goodness of fit of each model, we computed the Pearson correlation 

between each the each model prediction and our fluorescence data recorded during antidromic 

stimulation, f, termed corr(linear prediction, f) and corr(nonlinear prediction, f). In nearly all 

cases, the difference between the models corr(nonlinear prediction, f) − corr(linear prediction, f) 

was close to zero, suggesting the sufficiency of the linear model for use in spike inference 

(Figure S1D-E). 

 

Ventral root burst identification and phase estimation 

Raw ventral root recordings were first symmetrically band-pass filtered (1 Hz-1 kHz). To make 

root activity peaks clearer, we filtered each resulting time series s(t) by replacing its value at 

each time step with the standard deviation of s(t) from 5 ms prior to 5 ms after that time step, and 

ignoring the first and last 5 ms of the time series (Ahrens et al., 2012). Finally, we convolved the 

result with a Gaussian kernel (σ = 0.5 s) to eliminate most local maxima and thus permit reliable 



peak detection. Locomotor cycles were defined as the epochs between adjacent L1 or L2 peaks. 

Angle gradations (0º-360º) were uniformly distributed within each cycle. Little variation was 

observed between datasets referenced to L1 recordings and those referenced to L2 recordings, 

consistent with previous observations (Falgairolle and Cazalets, 2007; Kwan et al., 2009). 

Circular statistics on phase measurements were implemented using the Circular Statistics toolbox 

(Berens, 2009; Zar, 1999).  

 

To quantify burst firing phase, each nonzero spike count value was assigned to a cycle 

phase based on its relative proximity to the root peaks immediately surrounding it (i.e. the 

locomotor cycle in which it fell). For each motor neuron, the circular mean of these phase values, 

weighted by the corresponding size of each inferred spike count, was computed at each 

locomotor cycle. Spikes arising from locomotor cycles that were greater than 10 s long or less 

than 2.5 s long (approximately 0.5x and 2.0x the average locomotor burst frequency, 

respectively) were excluded from the phase computation, as burst cycles of those lengths tended 

to arise from rare failures in peak detection or transient interruptions in rhythmic network 

activity. A motor neuron’s phase tuning was defined as the median of the resulting values, which 

approximated the average phase of burst firing. We chose to quantify mean burst phase instead 

of onset or offset, after evaluating each statistic for all identified ankle flexor motor neurons 

recorded during locomotor firing and finding that the variance across the population was slightly 

higher for both onset and offset. 

 

 The mean burst frequency of the locomotor rhythm was quantified for each imaging field 

by computing the inter-burst interval time between adjacent L1 or L2 peaks and taking the 

inverse of these mean inter-burst interval times. The average frequency for each preparation was 

quantified by taking the median across all recordings. 

  

Quantification of phase estimation error 

Inferred spiking calculated from fluorescence collected during four of the ten bursts in the 

antidromic stimulus (Figure S2C) was used to measure the error of phase tuning estimates. These 

four bursts, which consisted of 16-24 pulses over 1.5 seconds, equating to an average pulse rate 

of 10-17 Hz, were chosen because the observed fluorescence responses well approximated those 



seen during agonist-induced locomotor firing. We analyzed only those motor neurons imaged 

during antidromic stimulation that had a summed squared residual error value below an 

empirically determined threshold set such that only neurons unambiguously responding to the 

stimulus were included (n = 9 – 98 neurons per cord, mean = 26 neurons per cord, 367 neurons 

total; N = 14 spinal cords). The summed squared residual error was computed for each neuron by 

subtracting the normalized fluorescence data from the convolution of the antidromic stimulus 

underlying the fluorescence data (binned into a histogram with the bin width equal to the 

imaging frame rate) with an exponentially decaying kernel,	kሺtሻ 	ൌ 	 eି୲/த, where τ was estimated 

using our system identification approach described above.  

 

We computed the phase tuning of each qualifying neuron following the same procedure 

used for neurons recorded during locomotor firing, except here the midpoint of each antidromic 

stimulus burst was defined as 0° in each cycle. Since the antidromic stimulus was assumed to be 

equal to the motor neuron spike train, in addition to being a phase reference the midpoint of each 

antidromic burst is also the true phase for each cell. The estimated phase tuning values here thus 

represent the errors associated with estimating phase from fluorescence. 

 

We compared the phase tuning error distributions obtained from the use of our spike 

inference method to those obtained from a simpler method, termed peak detection (Figure 

S2G,H). In our peak detection algorithm, we symmetrically band-pass filtered the fluorescence 

data from 0.1 Hz to 1 Hz with a 4th order Butterworth filter, and then found the maxima of the 

filtered time series using the findpeaks MATLAB function with a minimum peak height of 0.2 

times the standard deviation of the filtered time series. We also used the mean difference of the 

phase tuning error distributions to derive a baseline value for assessing the stability of phase 

tuning over time. This mean difference represents the expected difference between phase tuning 

measurements taken at different time points under the assumption that phase tuning does not 

change. The mean difference was estimated by taking 2/√ߨ	times the standard deviation of the 

observed antidromic error in each dataset. 

 

Generation of spatial maps of phase tuning 



A subset of all imaged motor neurons were included in the spatial maps of phase tuning. Neurons 

were selected by performing Rayleigh’s test of circular uniformity on the normalized spike 

histogram of each neuron. Motor neurons yielding p-values ≥ 0.5 were excluded, effectively 

eliminating the noisiest neurons while retaining broadly tuned cells with weak signals but 

reliable phase tuning estimates. As imaging fields were partially overlapping, individual neurons 

were sometimes found in multiple image sequences. These duplicate neurons were located by 

finding pairs of neuron centroids located within 20 µm of each other, where each centroid was 

from an overlapping pair of imaging fields. Only one copy of each duplicate neuron was 

retained. Maps created from data obtained from both Olig2::Cre and ChAT::Cre expressing mice 

were quantitatively indistinguishable. 

 

Since the variation in spinal cord thickness across segments caused the central canal to 

not lie straight, we corrected the positional coordinates of imaged neurons to compensate. We 

first fit a smoothing spline to the three dimensional positional coordinates of motor neurons 

using the fit function in MATLAB with the smoothness parameter set to 10-9. Then, we used the 

smoothing spline to generate a new rostrocaudal coordinate for each neuron, given by the 

distance from the origin to the neuron’s original rostrocaudal position as measured along the 

smoothing spline. The mediolateral and dorsoventral coordinates were also re-centered around 

the fitted smoothing spline by subtracting off the position of the smoothing spline in the original 

coordinate space from each original mediolateral and dorsoventral neuronal position. 

 

To functionally identify the boundaries of certain spinal segments in these maps, 

epifluorescence image sequence data acquired during antidromic stimulation (4x magnification) 

were used. For each pixel in the imaging field, we computed the standard deviation of 

fluorescence across time and overlaid resulting values on their corresponding positions within 

epifluorescence images showing CTB-labeled cells. The resulting image showed the region of 

the lumbar spinal cord that had high standard deviation values indicating that it was responsive 

to the antidromic stimulus. We manually registered this image to our large-scale spatial maps of 

phase tuning by using the rostrocaudal position of CTB-labeled motor neurons. We then defined 

the boundaries of the antidromically activated segment as the rostral and caudal edges of the 

region containing responsive cells. In one case in which the caudal boundary was obscured by 



the position of the ventral root in epifluorescence images, we used the center position of the 

ventral root as the caudal segmental boundary.  

 

Phase synchronization 

Phase synchronization was computed using normalized spike histograms yielding a Rayleigh test 

p value < 0.05. This more stringent criterion was used to restrict our analyses to neurons whose 

somatic fluorescence was recorded with a high signal-to-noise ratio. Spike histograms, treated as 

time series vectors, were first band-pass filtered between 0.1 and 1 Hz (4th order symmetric 

Butterworth filter, MATLAB functions butter and filtfilt), in order to focus on the degree of 

synchronization at the frequency of locomotor firing (mean ± s.d. = 0.25 ± 0.06 Hz, n = 15 spinal 

cords; Figure S6). Filtered histograms were then expressed in terms of instantaneous phase by 

taking their Hilbert transform (MATLAB function hilbert) and converting complex values to 

phase angles. The first and last tenths of the resulting instantaneous phase vectors were removed. 

To compute phase synchronization for a pair of N-element instantaneous phase vectors, we first 

computed their relative phase by subtracting them, yielding φ = [φ1 ... φN]. Phase 

synchronization is then the scalar R given by (Mormann et al., 2000): 

ܴ ൌ ቮ
1
ܰ
݆݁݅߮
ே

ୀଵ

ቮ. 

 

To test for the significance of synchrony within and between synergy groups, we used a 

Wilcoxon test to compare phase synchrony index distributions with their equivalent calculated 

after circular permutation of one time series from each pair. Because cycle periods vary, circular 

permutation should reduce synchrony to a level approaching that expected by chance if the two 

time series were independent. Circular permutation was performed by picking a random element 

in one of the time series, removing the series of elements coming before it, and concatenating 

them to the end of the remaining time series. We also used the Wilcoxon test to compare phase 

synchrony index distributions within and between synergy groups. Here, we performed the test 

both with and without a control for differences in the proximity of neuron pairs within versus 

between synergist groups. In the controlled case, we first identified, for each pair of non-

synergist motor neurons, the pair of synergist motor neurons not previously identified whose 



proximity was most similar. The Wilcoxon test was then used to compare phase synchrony index 

distributions for non-synergist and identified synergist pairs. 

 

Cycle-triggered firing rates 

Cycle-triggered firing rates were computed for cells whose spike histograms yielded a Rayleigh 

test p value < 0.05. The firing rate vectors were computed by generating a 100-bin histogram of 

inferred spike counts according to their locomotor phase, then convolving these histograms with 

a Gaussian kernel (σ = 4 bins). Burst duration was measured from cycle-averaged firing rates by 

identifying the last histogram bin before, and first histogram bin after, the peak value at which 

the spike count is ≤ half of the peak value. Burst duration was the fraction of the histogram’s 

domain, expressed in degrees, between these two bins. The last and first histogram bins were 

considered to be adjacent, as implied by the cyclic nature of the histogram’s domain.  

 

After k-means clustering (k = 2) was performed on cycle-averaged firing rates, a 

clustering index was calculated to quantify the separation between the resulting two clusters. The 

clustering index was measured in terms of the phase of peak firing and burst duration measured 

from cycle-averaged firing rates. To compute this index, we first generated a two-element vector 

for each cycle-averaged firing rate in which the first element was peak phase and the second 

element was burst duration. We then computed the two-dimensional vector mean (centroid) for 

vectors assigned to each cluster, resulting in the cluster centroids ܿଵ ൌ 
ܿଵ
ଵ

ܿଶ
ଵ൨ and ܿଶ ൌ 

ܿଵ
ଶ

ܿଶ
ଶ൨. We 

then measured the root-mean-squared distance between all vectors and their centroid for each 

cluster, resulting in the cluster root-mean-squared distances	ݎଵ and ݎଶ. The clustering index, CI, 

was defined as: 

ܫܥ ൌ
2ඥሺܿଵ

ଵ െ ܿଵ
ଶሻଶ  ሺܿଶ

ଵ െ ܿଶ
ଶሻଶ

ଵݎ  ଶݎ
. 

 

 The overlap between joint distributions of peak phase and burst duration was measured 

by first estimating a kernel density function (using the MATLAB function kde2d obtained from 

the MathWorks file exchange) defined across a grid to describe each joint distribution. These 

density functions were normalized to ensure they integrated to one. The overlap of two density 



functions was found by finding the lower of the two density’s values at each grid point, then 

summing all of those lower values. Fold difference in similarity for the joint distribution of 

FoxP1MNΔ motor neurons was computed by dividing its overlap with the early firing wild type 

set with that of the late firing wild type set. We tested for differences in overlap between CTB-

labeled FoxP1MNΔ motor neurons and early or late firing wild type clusters using a Monte Carlo 

approach. The joint peak phase and burst duration distributions for CTB-labeled FoxP1MNΔ 

motor neurons were bootstrap resampled 100,000 times and overlap with both wild type clusters 

was computed each time. P values measuring overlap differences were calculated as (1 + # of 

bootstraps for which overlap with the late firing cluster was higher) / 100,001. 

 

Analysis of motor pattern complexity 

All cycle-triggered firing rates for neurons with Rayleigh test p values < 0.05 from each dataset 

were stored in matrices, denoted R, of size 100 × n, where n = number of neurons in the current 

dataset and 100 is the number of bins in our cycle-averaged firing rates. Each of these matrices 

was then approximately factorized using non-negative matrix factorization (using the MATLAB 

function nnmf; Lee and Seung, 1999). This method finds a pattern matrix P, and a weight matrix 

W, such that R ≈ PW with all entries in P (size 100 × k) and W (size k × n) constrained to be 

non-negative. k defines the number of patterns to use in the decomposition. 

We factorized the R matrix for each dataset using this approach with k=1-6. To guard 

against poor initial initializations for P and W leading to poor estimates, we set the ‘replicates’ 

option to 10, so each factorization operation was repeated that many times with the lowest-error 

replicate returned by the algorithm. As in (Dominici et al., 2011), variance explained in the data 

by the P and W matrices resulting from NMF at each k value was given by:  

݈݀݁݊݅ܽݔܧ	݁ܿ݊ܽ݅ݎܸܽ ൌ 1 െ
ܧܵܵ
ܵܵܶ

 

where: 

ܧܵܵ ൌ݈ܽݑ݀݅ݏ݁ݎ,
ଶ

ଵ

ୀଵ

	



ୀଵ

; ݈ܽݑ݀݅ݏ݁ݎ	 ൌ ܴ െ ܹܲ;	 
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 In addition, we performed a similar analysis using principal components analysis 

implemented by the MATLAB function princomp. The amount of variance explained by each 

principal component was simply returned by that function in the ‘latent’ argument.  
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